Thenumber of solution of tan x + sec x = 2 cos x in [0, 2π) is; If A = sin^2 x + cos^4 x, then for all real x; In a ∆PQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1; If 5(tan^2 x – cos^2x) = 2 cos 2x + 9, then the value of cos 4x is; If 0 ≤ x the number of real values of x; Let fk(x) = 1/k(sin^k x + cos^k x) where x ∈ R and k 1– 10 Soal Aturan Sinus, Aturan Cosinus dan Luas Segitiga dan Jawaban. 1. Deketahui segitiga ABC, dengan panjang AC = 25 cm, sudut A = 60°, dan sudut C = 75° jika sin 75° = 0,9659, tentukan panjang BC dan AB. That means, using the Pythagorean Theorem, the missing side is 4 (actually -4 because it's in the negative x direction) so the cos(a) = -4/5 If the angle is between π/2 and π and cos(b) = -1/3 then the triangle looks like this: cos (A+B)=4/5, thus tan (A+B)=3/4 from triangle. sin (A-B)=5/13,thus tan (A-B)=5/12. then tan (2A)=tan ( (A+B)+ (A-B)) = (tan (A+B)+tan (A-B))/ (1-tan (A+B)tan (A-B)) = (3/4+5/12)/ (1- (3/4) (5/12)) = 56/33. Suggest Corrections. 3. Calculdu cosinus d'un angle exprimé en radians. La calculatrice de cosinus permet grâce à la fonction cos de calculer en ligne le cosinus d'un angle en radians, il faut commencer par sélectionner l'unité souhaitée en cliquant sur le bouton options du module calcul. Une fois cette action réalisée, vous pouvez commencer vos calculs. Example 2: Using the values of angles from the trigonometric table, solve the expression: 2 sin 67.5º cos 22.5º. Solution: We can rewrite the given expression as, 2 sin 67.5º cos 22.5º = 2 sin ½ (135)º cos ½ (45)º. Assuming A + B = 135º, A - B = 45º and solving for A and B, we get, A = 90º and B = 45º.. ⇒ 2 sin ½ (135)º cos ½ (45)º = 2 sin ½ (90º + 45º) cos ½ (90º - 45º) PSla0. >>Class 11>>Maths>>Trigonometric Functions>>Trigonometric Functions of Sum and Difference of Two angles>>If cos A = 4/5 , cos B = 12/13 , 3pi/Open in AppUpdated on 2022-09-05SolutionVerified by TopprA and B both lie in the IV quadrant.=> are negativei iiSolve any question of Trigonometric Functions with-Was this answer helpful? 00More From ChapterLearn with Videos Practice more questions

sin a 4 5 cos b 5 13